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ABSTRACT
Tissue temperature increases, when oxidative metabolism is boosted. The source of nutrients and
oxygen for this metabolism is the blood. The blood also cools down the tissue, and this is the only
cooling mechanism, when direct dissipation of heat from the tissue to the environment is
insignificant, e.g., in the brain. While this concept is relatively simple, it has not been described
quantitatively. The purpose of the present work was to answer two questions: 1) to what extent can
oxidative metabolism make the organ tissue warmer than the body core, and, 2) how quickly are
changes in the local metabolism reflected in the temperature of the tissue? Our theoretical analysis
demonstrates that, at equilibrium, given that heat exchange with the organ is provided by the
blood, the temperature difference between the organ tissue and the arterial blood is proportional
to the arteriovenous difference in oxygen content, does not depend on the blood flow, and cannot
exceed 1.3oC. Unlike the equilibrium temperature difference, the rate of change of the local
temperature, with respect to time, does depend on the blood flow. In organs with high perfusion
rates, such as the brain and muscles, temperature changes occur on a time scale of a few minutes.
In organs with low perfusion rates, such changes may have characteristic time constants of tens or
hundreds of minutes. Our analysis explains, why arterial blood temperature is the main determinant
of the temperature of tissues with limited heat exchange, such as the brain.

Abbreviations: BAT: Brown Adipose Tissue
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Aim

We used a simple mathematical model of heat produc-
tion and transfer to answer two questions: 1) how
much warmer than the body core can a tissue with
active metabolism be, and 2) how quickly do changes
in local metabolism manifest themselves in the tissue
temperature?

Organ temperature changes due to local
metabolism

Here, we consider an organ that intrinsically generates
heat due to ongoing oxidative metabolism (Box 1,
Fig. 1). Importantly, oxygen, which is necessary for
this process, is delivered by the bloodstream, which is
also responsible for the removal of heat from the
organ. In this section, we describe how much warmer

the organ is, as compared with the incoming arterial
blood. Let DTorg be the difference between the organ
temperature Torg

� �
and core body temperature (TcÞ:

DTorg ¼ Torg � Tc:

Box 1. Mathematical model describing changes
of local temperature in presence of oxidative
metabolism.

In the model depicted at the Figure 1, the rate of
heat generation is proportional to the product of
the arteriovenous difference in oxygen content
(AVO2, in ml O2/ml blood), the heat produced
from the utilization of one unit of oxygen (a, in
J/ml O2), and the blood flow per unit of organ
mass (BF, in ml/min/g). The amount of heat
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removed by the circulation is proportional to the
blood flow, the heat capacity of the blood (Cb, in J/
ml), and the temperature difference between the
blood leaving the tissue and the blood entering the
tissue (in �C). The temperature of incoming blood
is equal to the core body temperature (Tc), while
the outgoing blood temperature, according to
Pennes’ proposition [1], is equal to the organ tem-
perature (Torg), assuming complete equilibration
during its passage [2,3]. The organ can also have
direct (non-circulatory) heat exchange with its envi-
ronment. The heat dissipation rate (g) is a coeffi-
cient of the linear relationship between heat flow
and the temperature difference between the organ
and its environment. We denote the temperature of
the environment (ambient temperature) by Ta and
assume that Ta, Tc and BF are constant. Finally, we
denote the heat capacity of the organ by Corg (in J/g).

Combining all of the above, the organ tempera-
ture obeys the following differential equation,
whose right-hand side includes three terms, viz.,
metabolic heat production, heat transfer to the
body core, and heat dissipation to the environ-
ment, respectively:

Corg
dTorg

dt
¼ a�AVO2�BF þ Cb�BF� Tc � Torg

� �þ g Ta � Torg
� �

:

(1)

At equilibrium, the temperatures do not change, so
the rate of change of the organ temperature is equal
to zero. By equating the right-hand side of Equa-
tion (1) to zero

a�AVO2�BF þ Cb�BF� Tc � Torg

� �þ g Ta� Tcð Þ þ g Tc � Torg

� � ¼ 0

and rearranging the terms,
g þ Cb�BFð Þ Tc � Torg

� � ¼ � a�AVO2�BF � g Ta� Tcð Þ
one can find that the difference between the

organ temperature Torg
� �

and core body tempera-
ture (TcÞ:

D Torg ¼ Torg � Tc ¼ a∙AVO2

Cb þ g
BF

� Tc � Ta

Cb∙ BFg þ 1
: (2)

The second term of the right-hand side of Equation
(2), the one with the negative sign, defines the tem-
perature difference between the organ and the core
due to heat dissipation to the environment in the
absence of oxidative metabolism. When the envi-
ronment is colder or warmer than the body core,
the relative weight of this term increases with the

heat dissipation rate g: In contrast, increasing
blood flow protects the temperature of the organ
from the effects of environment (both cold and
hot). This exchange with the environment is not
dependent on local metabolism per se, and is out-
side of scope of this analysis.

Therefore, we concentrate on the first term of
the right-hand side of Equation (2) which is associ-
ated with oxidative metabolism. Importantly, as
the dissipation coefficient g increases, the denomi-
nator increases, which results in a smaller meta-
bolic contribution to the temperature difference.
Therefore, the maximum possible effect of oxida-
tive metabolism on equilibrium temperature differ-
ence (DTmax

org ) is observed when no heat dissipation
to the environment occurs g ¼ 0ð Þ, i.e.,

DTmax
org ¼ a∙AVO2

Cb
: (3)

According to the mathematical analysis presented
in Box 1, the effect of oxidative metabolism on local
temperature is proportional to the arteriovenous

Figure 1. Simplified model of organ temperature control by oxi-
dative metabolism, the circulation and non-circulatory heat dissi-
pation. The heat production in the organ is proportional to the
arteriovenous difference in oxygen content. The amount of heat
removed by the circulation is proportional to the blood flow and
the temperature difference between the blood leaving the tissue
(equal to the organ temperature, Torg) and the blood entering
the tissue (core body temperature, Tc). The amount of heat dissi-
pating to the environment is proportional to the difference
between organ temperature and ambient temperature.
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difference in oxygen content (AVO2), and the maximal
difference between the temperatures of the organ and
the body core in absence of non-circulatory heat
exchange with the environment is:

DTmax
org ¼ a

Cb
AVO2:

This equation demonstrates that, given that the heat
from one unit of oxygen (a) and the heat capacity of
the blood (Cb) are constant, the maximum temperature
difference is achieved when all oxygen is cleared from
fully saturated arterial blood. The oxygen capacity of
hemoglobin is 1.34–1.36 ml O2/g [4,5]. In most healthy
mammals, the amount of hemoglobin in the blood does
not exceed 15 g/100 ml [5], and hemoglobin is almost
completely saturated with oxygen in the arterial blood
in physiological conditions. Therefore, the total amount
of oxygen in blood is usually< 0.2 ml O2/ml blood [5].

The heat that can be generated from one unit of
oxygen að Þ depends on the substrate. When the sub-
strate is carbohydrates, the energy generated from
1 ml of oxygen is 21.13 J, and is 19.69 J when the sub-
strate is fat [6]. For the upper estimate, we use the
greater value (carbohydrate). The heat capacity
of blood (Cb) can be estimated to be 3,600 J/kg/�C, or
3.4 J/ml/�C [7]. Therefore, if the blood is completely
cleared of oxygen after passing through the organ
(venous oxygen content is zero), then the maximum
possible temperature difference is:

DTmax
org ¼ 21:13∙0:2

3:4
� 1:24ð�CÞ< 1:3ð�CÞ:

For example, if at rest the muscle temperature is the
same as core body temperature and is 37.0�C, in no
condition can it rise above 38.3�C solely due to the
metabolic consequences of an intense workout,
assuming other variables and parameters (e.g., core
temperature and blood flow) remain unchanged. If
local temperature is significantly lower than the core
temperature, as is often the case in studies of inter-
scapular adipose tissue in rodents [8], there is signifi-
cant non-circulatory dissipation to the environment.
As explained in Box 1, in the presence of non-circula-
tory heat dissipation from the organ to the environ-
ment (g> 0), the greatest possible temperature
increase solely mediated by the oxidative metabolism
(the first term in Equation (2)) will be smaller than
1.3�C. For example, if core temperature is 37�C, local

temperature with inactive metabolism is 34�C, and
ambient temperature is 22�C, we can use Equation (2)
from Box 1 with AVO2 ¼ 0 to estimate that
BF�Cb=g ¼ 4. Considering this, we can further con-
clude that the maximal increase of local temperature
after the local metabolism is switched on will be lim-
ited by

Ton
org � Toff

org ¼
a�AVO2

Cb þ g
BF

¼ 1:24
1þ 1=4

� 1 �Cð Þ:

In this example, local temperature cannot exceed
35�C, if only oxidative metabolism does change.

Some additional limitations should also be noted.
First, most certified thermometers have an absolute
precision of 0.1�C, which results in 0.2�C precision for
the difference between two measured temperatures.
Many devices used by physiologists have even lower
precision. Furthermore, in this paper, we assume that
the core (or, to be more precise, the extra-brain com-
partment of the core) is isothermal and has the exact
same temperature as the “arterial blood.” In real life,
however, blood in different arteries and different core
locations has slightly different temperatures (see, e.g.,
ref. [9]), and some sites (e.g., the rectum) can be attrib-
uted to the core or the shell, depending on the condi-
tions [10]. These facts should be considered while
interpreting temperature differences between the tis-
sue of interest and arterial blood (or body core), as
reported in various studies.

Variations of tissue temperature in the absence of
circulation

What happens to the tissue temperature if the blood
flow is completely stopped? On one hand, the blood
can no longer remove excessive heat from the tissue in
circulatory arrest, which might lead to dramatic over-
heating. On the other hand, there is no oxygen supply
to support additional metabolism under these condi-
tions. Therefore, to estimate the magnitude of the pos-
sible temperature change after an abrupt circulation
blockade, we need to consider how much oxygen is
stored in the tissue itself.

There are two major sources of stored oxygen:
intracellular proteins (myoglobin) and intra-organ
reserves of oxygenated blood. While myoglobin is
believed to help maintain oxygen in the contracting
muscle, the amount of myoglobin is very limited.
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Even if all the oxygen from the completely saturated
myoglobin of a muscle is utilized to produce heat, the
temperature of the tissue would rise by less than
0.1�C: 500 nmol myoglobin/g of muscle [11] £
22.4 ml O2/ mmol myoglobin (one molecule of oxygen
per each molecule of myoglobin) £ 21.13 J/ml O2

(heat from a unit of oxygen) / 3.42 J/�C/g (heat capac-
ity of muscle) [12] � 0.06�C. Therefore, under normal
conditions, the myoglobin-bound oxygen cannot pro-
vide a noticeable amount of heat.

Another source of oxygen during circulatory arrest
is the intra-organ reserve of oxygenated blood. How-
ever, this second source also appears insufficient to
cause biologically significant hyperthermia in most
cases. For example, the brain contains approximately
3 ml of blood per 100 g of tissue [13], which has 0.45 g
of hemoglobin (15 g Hb / 100 ml blood), carrying �
0.6 ml of oxygen (1.34 ml O2/g Hb). If all this oxygen
would be used at once, it would increase the tissue
temperature by approximately 0.03�C (21.13 J/ml O2,
with a brain tissue heat capacity of 3.6 J/�C/g) [12].
Two other organs that have significant amounts of
intra-organ blood are the liver (30 ml blood/100 g tis-
sue [14], which, if used completely, can translate into
a 0.3�C increase in local temperature) and the spleen
(up to 80 ml blood/100 g tissue [15]). For example,
Barcroft and Stephens [16] report that, in dogs, cats,
horses, and sheep, the spleen can release a substantial
amount of blood (up to 20% of the circulating volume)
into the systemic circulation following hemorrhage,
hypoxia, exercise, and other conditions. Furthermore,
according to Barcroft and Poole [17], the hemoglobin
concentration, as well as the hematocrit, are 50%
higher in the splenic blood than in the systemic circu-
lation, which can increase the maximum possible oxy-
gen storage per volume of blood. However, in both the
spleen and the liver, the blood is stored in capacitive
vessels and, most likely, is not saturated with oxygen.

Dynamics of metabolism-induced changes in organ
temperature

How fast does the local temperature converge to a new
equilibrium if the oxygen consumption in the organ is
changed in a step-wise manner? For a rough estimate,
we assume that all other parameters in the differential
equation (1) remain constant, and non-circulatory
heat dissipation to the environment does not occur.
According to Equation 6 in Box 2, the half-life for

reaching the new equilibrium in these conditions can
be calculated as:

t1=2 ¼ 0:7
Corg

Cb�BF :

Box 2. Dynamics of local temperature after step-
wise activation of oxidative metabolism
In the absence of heat dissipation g ¼ 0ð Þ, if the
core temperature is constant, Equation (1) from
Box 1 can be rewritten as

Corg
d Torg � Tc
� �

dt
¼ a�AVO2�BF � Cb�BF� Torg � Tc

� �

(4)

After denoting D Torg ¼ Torg � Tc, we have

Corg

Cb∙BF
� dDTorg

dt
¼ a

Cb
�AVO2 � DTorg (5)

If initial AVO2 ¼ 0, then Torg ¼ Tc, and, therefore,
DTorg ¼ 0.

For a linear differential equation in the form of
t� dy

dx ¼ yeq � y, with the initial condition of
y 0ð Þ ¼ 0, the solution is y tð Þ ¼ yeq 1� e�

t
t

� �
,

where yeq is new equilibrium, and t is time con-
stant. To characterize the convergence process to a
new equilibrium, the time to reduce the deviation
from equilibrium by half (a.k.a. the half-life, or
t1=2) is often used. It relates to the time constant t
as t1=2 ¼ t ln2 � 0:7t:

From the above, if AVO2 changes abruptly, the
convergence to new equilibrium is characterized by
half-life

t1=2 ¼ 0:7
Corg

Cb∙BF
: (6)

For muscles, the heat capacity is
Corg ¼ 3:59 J=g=�C [18], whereas the blood flow dur-
ing intense contractions reaches BF ¼ 0:5 ml/g/min.
Therefore,

t1=2 ¼ 0:7� 3:59
3:4

� 1
0:5

� 1:5 minð Þ:

Similar values of blood flow and heat capacity were
reported for the brain [19], so the half-life in the brain
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will be in a similar range, i.e., 1–2 min. Accordingly,
the equilibrium of the temperature difference between
arterial blood and the brain during challenges is
reached within a few minutes. For example, Fonseca
et al. demonstrated that the maximum brain-blood
temperature difference was reached at 6 min after the
beginning of constant intensity exercise [20]. Temper-
ature changes in the brain do, in fact, occur faster
than in other organs [21], but the reason for this is
not higher metabolism, but higher blood flow.

The same formulas describe situations when the
body temperature changes abruptly, and local tissue
temperatures follow the body core temperature. Meta-
bolically active organs (which also have high local cir-
culation), such as the brain, have characteristic
convergence times in the range of a few minutes. In
the experiments of Hayward and Baker [22,23], ani-
mals were injected with cold saline or given cold food
or drinks. The resulting temperature decrease was
delayed in the brain, as compared to the arterial blood.
The temperature of gray matter was stabilized within
4–6 min [22,23]. The temperature responses of white
matter and of subcutaneous tissues of the scalp, which

have lower perfusion, had a longer delay, for up to
10 min (Fig. 2). Hypercapnia, which increases blood
flow, “accelerated clearance of a bolus injection of cold
saline,” [23] thus confirming that the time required
for local temperature convergence to the equilibrium
depends on the blood flow.

Understanding the organ temperature dynamics
could help reconstruct the time course of the metabo-
lism that drives thermal changes. Usually, the differ-
ence between the brain and other core sites reaches a
maximum within a few minutes. Kiyatkin et al. [21]
studied the dynamics of temperature in various brain
structures using different experimental paradigms (tail
pinch, exposure of a rat to a mouse or to another rat,
etc.) and compared them with the changes in the tem-
perature of arterial blood. Figure 3 represents a sum-
mary of responses to a tail pinch. The maximum
increase in temperature of each structure was reached
between 10 and 20 min (Fig. 3A, B), however, the
brain-blood temperature difference reached its maxi-
mum at 3–4 min post-stimulus (Fig. 3C). The brain
temperature started rising virtually immediately
(Fig. 3D), and was nearly linear until the temperature

Figure 2. Comparison of brain and arterial blood temperature dynamics during body cooling induced by the consumption of cold food.
A. A monkey fills cheek pouches with bananas chilled to 10�C and eats them (arrows). Note that the rapid cooling of arterial blood was
followed by cooling of the frontal cortex and hypothalamus with a short delay. In contrast, the parietal subcortical white matter and sub-
cutaneous tissue of the scalp demonstrated significant thermal inertia, as evident from the long delays in the response onset and nadir
at each of these locations. B. A rabbit eats cold, chopped apples (arrows). The temperature dynamics in the aorta, basilar artery, and
interpeduncular fossa were nearly identical (for clarity, the authors lowered the traces from the aorta and basilar artery), whereas those
in the massa intermedia and ear skin were delayed. Replotted from the data reported in ref. [22].
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difference reached its maximum after 3–4 min. After
that, the brain temperature started gradually converg-
ing back to the blood temperature. Does this pattern
correspond to variations in local brain metabolism?
The calculations above (see Equation (5)) show that,
at this timescale, the level of oxidative metabolism
defines the rate of change of temperature, i.e., the
slope of the temperature curves in Fig. 3D, rather than
the temperature itself. Therefore, the observed tem-
perature transient is probably due to an abrupt
increase of the brain metabolism right after the pinch,
followed by a quick reduction of brain metabolic activ-
ity. In summary, abrupt changes in metabolism result
in a gradual response of the local temperature on a
timescale of minutes.

Brain temperature

As it was shown in many studies, local temperatures
depend on the temperature of the arterial blood. For
example, the brain is highly metabolically active; it is
responsible for 20–25% of the total oxygen consump-
tion [24]. Without producing any physical work, all
cerebral metabolic activity is eventually converted into
heat. Yet, as it was discovered half a century ago, brain

temperature follows arterial blood temperature
[22,23]. This experimental finding agrees with basic
physics. As shown above, at equilibrium, if there is no
heat exchange between the organ and its environment
(other than through the circulation), the organ tem-
perature cannot be more than 1.3�C higher than the
arterial blood temperature. Furthermore, the core
temperature in rats fluctuates between »37 and 38�C,
with a potential to decrease to »36�C during sleep
[25,26] and to increase to »39�C during intense exer-
cise [27–32] or pharmacological stimulation [33–35].
As such, the physiological range of the core tempera-
ture is almost three times wider than the maximum
effect of local metabolism. Obviously, in extreme sit-
uations, deep core body temperature may be even
lower than 36�C or higher than 39�C, but the brain-
blood temperature gradient is still bounded by 1.3�C.
This does not diminish the importance of local metab-
olism; in many situations, having a brain temperature
1.3�C lower or higher is equivalent to living or dying
(see, e.g., ref. [35]).

The above estimates assume that all consumed oxy-
gen originates from the blood. But what is the actual
range of the difference in arteriovenous oxygen con-
tent, and into what actual brain-core temperature

Figure 3. Tail pinch induces an immediate increase of heat production in the brain, which is much shorter than systemic hyperthermia.
A. Absolute temperatures reached their maximums in 10–15 min. B. The amplitude of temperature change (from prestimulation base-
line) was higher in the brain than in the blood. C. Temperature differences between the blood and each brain structure are shown. The
dynamics in the striatum is faster than in the cerebellum. D. The onsets of temperature responses to a tail pinch (first minute of
responses shown in panel C). The data (mean § SE) are replotted from ref. [21].
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difference does this oxygen consumption translate?
With 3.0-3.5 ml/100 g/min of oxygen consumption in
the human brain [19], 55–60 ml/100 g/min of blood
flow [24,36], and 0.2 ml O2/ml blood, the percentage
of oxygen extracted by the brain from the blood is 25–
30%, assuming that the arterial blood is fully saturated
with oxygen in healthy subjects. This oxygen extrac-
tion figure is supported by direct measurements of
oxygen content in the jugular vein [37]. This range of
arteriovenous oxygen difference translates into a 0.3-
0.4oC contribution of oxidative metabolism to the
brain temperature, which is consistent with the num-
bers obtained by Hayward and Baker in deep brain
structures in monkeys (Fig. 4) [23]. Conversely, the
difference between the brain temperature and the tem-
perature of incoming arterial blood can be recalculated
into the oxygen extraction. For example, if at the max-
imum oxygen extraction, the blood-tissue temperature
difference is close to 1.3�C, then the difference of
0.4�C translates into »1/3 of the oxygen consumed
during arteriovenous transfer.

It is important to reemphasize that the temperature
difference is linked to the percentage of oxygen extrac-
tion, not absolute oxygen consumption. To correlate

changes in local temperature with the oxygen con-
sumption, the local blood flow needs to be known.
Counterintuitively, an increase in the oxygen con-
sumption (per 1 g of tissue) does not necessarily result
in an increase in local temperature. If oxygen con-
sumption is increased in parallel with a proportional
increase in tissue perfusion (so that the arteriovenous
oxygen extraction is not changed), the local tempera-
ture will not change either. Moreover, if the tissue per-
fusion “overshoots” the oxygen consumption, the
local temperature can decrease. Hence, an increase in
the local temperature can be accompanied by either
an increase or a decrease in local metabolism, depend-
ing on the tissue perfusion and oxygen extraction in
the organ.

Another important aspect that is underappreciated
in the literature is how fast the brain temperature
adapts to variations in metabolism. Unlike the equilib-
rium temperature itself, the rate of temperature
change depends on the blood flow. In highly perfused
organs, like the brain, the half-life of the organ tem-
perature is in the range of a few minutes. If the local
metabolism changes, the local temperature reaches a
new equilibrium within 3–4 min. And, vice versa, if

Figure 4. Temperature differences between the arterial blood and various brain and subarachnoid sites in the monkey. The data are
shown on two representative coronal sections, A (frontal coordinate of 14.3 mm) and B (frontal coordinate of 0.3 mm), adapted from
Olszewski, 1952 [38]. Note that, for the deep structures, the brain-blood temperature differences are in the range of 0.2-0.6�C. It is possi-
ble that non-circulatory dissipation to the environment is more significant in cortical structures and decreases the brain-blood tempera-
ture difference. The map of the brain-blood temperature differences is replotted from data reported in ref. [23].
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there is an abrupt change in the arterial temperature
(e.g., as described in refs. [22,23]), the brain tempera-
ture will follow the arterial blood temperature with a
lag of a few minutes. Noteworthy, the time constant of
this process (half-life) can be used as a measure of
local brain perfusion.

Importance of the blood flow for controlling the
brain temperature is well known and easy to under-
stand. When physiologists want to deliver (or remove)
heat to (or from) a tissue at a certain rate in experi-
ments with heating (or cooling) perfusion devices,
they often have only one tool at their disposal: to
adjust the perfusion flow based on the inflow-outflow
perfusate temperature difference [39]. By analogy, it is
often assumed that increasing the blood flow will pre-
dictably cool the brain, and decreasing the flow will
warm it. However, the connection is more complex
(as shown above), and the result of changing the flow
also depends on the arteriovenous deoxygenation. The
amount of oxygen taken from the blood depends on
how long the blood releases oxygen to the tissue. For
example, arterial vasodilation increases blood flow (in
ml blood/g tissue) due to an increase in the arteriole
diameter, i.e., due to a decrease in the resistance. The
time during which the blood releases oxygen to the tis-
sue is inversely proportional to the average blood
speed, which, in turn, is proportional to the square of
the vessel’s diameter, according to Hagen-Poiseuille’s
Law. The amount of cleared oxygen is proportional to
the vessel’s surface, which grows linearly with its
diameter. As a result, vasodilation in the resistance
section of the circulatory path (i.e., arterial vasodila-
tion) is likely to reduce oxygen extraction in the organ.
In contrast, vasodilation in the capacitive section of
the circulatory path (i.e., venous vasodilation) does
not increase the perfusion volume, but may increase
the passage time, resulting in an increased extraction
of oxygen, and consequently, an increased local tem-
perature. This could be one of the mechanisms for a
simultaneous increase in both the blood flow and the
oxygen extraction. However, a blood flow increase is
most likely associated with a decreased oxygen extrac-
tion ratio. This is different from a traditional, simplis-
tic interpretation of brain cooling due to increased
blood flow, which does not account for the oxygen
extraction.

Increasing the blood flow to modify the brain tem-
perature was one of the main approaches in the stud-
ies of Hayward and Baker [22,23]. For example, they

induced hypercapnia in monkeys using 8–10% CO2 in
inhaled air. It is known to produce cerebral vasodilata-
tion [24] and to narrow the brain-body temperature
gradients. Similarly, hypocapnia, induced with hyper-
ventilation, widens the brain-blood temperature gra-
dients [23]. In this context, “widening of brain-blood
temperature gradient” means increasing the difference
between brain and blood (core body) temperatures,
while “narrowing” means decreasing it. A general idea
behind this statement is that, when vasodilation
occurs, the amount of blood (which removes heat)
increases, and the brain cools down. However, this
idea does not account for the fact that the increased
blood supply also results in more oxygen being deliv-
ered. As we have shown, if the same fraction of oxygen
is utilized (the same arteriovenous difference in the
oxygen content, or the same venous oxygen concen-
tration, as we assume that the arterial concentration is
close to saturation), the brain temperature will not
change.

Another interesting point related to the Hayward
and Baker study [23] concerns the effect of circulatory
arrest on the brain. In their study, a high dose of bar-
biturate was used to stop the heart, while the brain
temperature was recorded. After the circulation had
stopped, the temperature of deep brain structures rose
by 0.25�C. According to our estimates, the oxidative
processes in that case could not be responsible for
more than 0.03�C, i.e., one eighth of the total change.
Besides oxidation, other reactions occur in the tissue,
including glycolysis (which does not require oxygen),
dissipation of the membrane potentials, etc. In any
scenario, the danger of stopped brain circulation is
not associated with overheating.

Brown adipose tissue (BAT) temperature

Measuring BAT temperature is a well-accepted
approach to estimate non-shivering thermogenesis
in rodents [40]. BAT activation can be visualized in
uninstrumented rodents [41] (Fig. 5), and techniques
are now being developed to assess BAT activity in
humans based on the temperature of BAT skin projec-
tions [42]. Activation of thermogenesis in the inter-
scapular BAT of rats and mice has been extensively
documented during cold exposure and at the onset of
hyperthermic responses to various stimuli, as reviewed
by Meyer et al. [40]. The same review mentions exam-
ples of how physiologists differ in their approaches to
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collecting and interpreting BAT temperature data and,
especially, on how they relate temperature data to
BAT thermogenesis. This issue has become extremely
important after it was found that BAT is active in
adult humans [43], and that it may play a role in the
development of obesity [44].

There is a consensus that an increase in BAT tem-
perature should exceed the concurrent core tempera-
ture increase in order for the latter to be attributed to
BAT thermogenesis. In other words, the BAT-core
temperature difference should increase when BAT is
stimulated. At thermoneutrality, by definition [45,46],
BAT is not activated, so its oxygen extraction is mini-
mal. Indeed, the BAT temperature in unanesthetized,
fully conscious rats adapted to the experimental con-
ditions and exposed to a thermally neutral environ-
ment is very close to the deep (e.g., colonic)
temperature, usually slightly (by 0.1–0.2�C) lower
[47–50]. Following any activation of BAT, the BAT
temperature increases faster than the core tempera-
ture, and the former becomes higher than the latter,
with the difference between the two rapidly increasing
(Fig. 6; also see refs. [44–50]). However, sympathetic
activation increases not only the absolute intensity of

metabolism in BAT, but also the blood flow through
this tissue. Therefore, the BAT-core temperature dif-
ference due to additional metabolic activity in BAT is
offset by increased blood flow as it increases heat dissi-
pation. As a result, the BAT-core temperature differ-
ence reflects arteriovenous difference in oxygen
content, rather than absolute increase in BAT metabo-
lism.. Please note that in some cited studies conducted
in rats (e.g., ref. [50]), instead of measuring BAT tem-
perature, the authors aimed to place the tip of the
BAT thermocouple in the proximity of Sulzer’s vein
[51], which, in essence, collects the heat generated by
interscapular BAT and sends it (through the inner
vertebral plexus and the azygos and superior cava
veins) [52] to the heart for further distribution
throughout the body.

Interestingly, the BAT-core temperature difference
was found empirically to be a good index of BAT ther-
mogenesis in the early 1970s [49]. More recently, it
was formally proposed to be used as a BAT “thermo-
genesis index” [50]. The present work lays a theoreti-
cal foundation for such a use. It also suggests that, for
infrared studies in humans, a good measure of the
thermogenic activity of a BAT depot should be based
on a temperature difference between a skin projection
of this depot and the body core — not on the skin
projection temperature per se. In practice, the

Figure 5. A genetically hairless rat (Crl:CD-Hrhr) exposed to cold.
Two images of the animal are overlaid. The bottom layer is a reg-
ular (visible spectrum) photograph. The top layer is a semi-trans-
parent, color-coded infrared thermogram. In the thermogram,
temperatures from 31.0 to 37.0�C are coded with shades of yel-
low (from dark to light, respectively), temperatures below 31.0�C
are coded with black, and temperatures above 37.0�C are coded
with purple. As a result, the vasoconstricted hairless skin over the
heat-exchange organs appears black, whereas the haired skin
over the rest of the body is yellow. The external acoustic meatus
and the skin over the interscapular brown adipose tissue have
higher temperatures and show as purple. Reused from ref. [41].

Figure 6. Temperature responses of a rat to ambient cooling.
Exposure to 20�C induced cold thermogenesis (increased oxygen
consumption), which resulted in increased colonic and muscle
temperatures, despite the increased heat dissipation. Initially, the
BAT temperature was slightly below the colonic temperature, but
increased to 0.8�C above the colonic temperature during cold
exposure. Replotted from data reported in ref. [53].
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BAT-colonic temperature difference shows a strong
linear correlation with the whole body oxygen con-
sumption in a wide range of colonic temperatures, as
it was found during endotoxin-induced fever in rats
(Fig. 7; also see ref. [49]), and often approaches
1.0�C [25,47,48,50,54,55].

It is often emphasized that BAT temperature is sup-
posed to increase faster than the core temperature
when BAT thermogenesis is activated. This means
that the BAT-core temperature difference should
increase over time, which is only possible during the
transition from baseline equilibrium at rest (with a
low arteriovenous oxygen difference) to a high meta-
bolic state (with a high arteriovenous oxygen differ-
ence). This is exactly what is observed during BAT
activation in experiments (see above). Considering the
massive blood supply to the activated BAT, we esti-
mate the half-life for this process to be in the minute
range.

It is noteworthy that some depots of BAT, both in
rodents (e.g., interscapular) and in humans (e.g.,
supraclavicular) are located relatively superficially
under the skin and, hence, are subjected to non-circu-
latory heat dissipation to the environment (via subcu-
taneous tissues and the skin). Indeed, when these

depots are activated, their projections on the skin in
infrared images are seen as “hot spots,” both in
rodents (reviewed in ref. [40]), especially hairless
rodents [41], and humans (reviewed in ref. [42]). One
can speculate that the high blood flow in the activated
BAT makes the effect of heat dissipation to the envi-
ronment negligible, thus resulting in BAT-blood tem-
perature differences close to the theoretical maximum,
which is often the case (Figs. 6,8). It is striking, how-
ever, that increases in BAT temperature (from pre-
activation levels) of a substantially higher magnitude
(2–3�C) are often reported as well (see, e.g., Figure 8).
Absolute increases in BAT temperature of this magni-
tude can be easily explained in those cases when the
core and BAT temperatures rise simultaneously. In
those cases, the BAT-core temperature difference
(limited to 1.3�C) is superimposed on the increase in
core body temperature (which can comprise several
degrees).

This explanation, however, is not universal. For
example, in the experiment shown in Fig. 8, a very
large increase in BAT temperature (several degrees) is
accompanied by only a small increase in colonic tem-
perature (several tenths of a degree). In cases like this,
the baseline blood flow is usually low enough to allow
for a substantially negative BAT-core temperature dif-
ference at baseline, due to non-circulatory heat dissi-
pation from the inactive tissue with minimal blood
flow to the environment (Cb�BF=g91 in the denomi-

Figure 7. The BAT-blood temperature difference correlates with
total body oxygen consumption. The graph combines experi-
ments in unanesthetized rats exposed to 20�C (closed circles),
with those exposed to one of 25 other ambient temperatures
(open circles), with those exposed to 30�C and injected with an
endotoxin that causes fever (crosses). Replotted from data
reported in ref. [49].

Figure 8. Experimental manipulations can increase BAT tempera-
ture in an anesthetized, cooled rat preparation by more than 2�C.
Replotted from data reported in ref. [8].
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nator of the second term in the right-hand side of
Equation (2)). During BAT stimulation, the increased
blood flow makes this term negligible
(Cb� BF=g � 1). Figure 8 agrees with this interpreta-
tion: the temperature of BAT in an anesthetized,
cooled rat preparation before intrabrain injections of
muscimol and bicuculine is substantially lower than
that of the core (34.6 vs. 36.9�C). After the injections,
BAT temperature rapidly rises by several degrees to
eliminate this difference, and only then increases
above the colonic temperature (and never exceeds it
by more than 1.3�C). Unfortunately, unlike the experi-
ment shown in Figure 8, many papers do not report
the core temperature dynamic, thus, complicating
interpretation of the results.

Temperature in muscles

During exercise, body temperature increases due to the
activation of another heat-producing thermoeffector:
contracting muscles. According to our calculations, the
effect of local metabolism on the equilibrium tempera-
ture difference between muscles and the body core is
defined by the ratio of extracted oxygen only, and does
not depend on the rate of blood flow. Unlike the brain
with its relatively high basal metabolism, muscles do
not produce much heat at rest. Therefore, at rest,
muscles have temperatures close to that of the core or
slightly lower, due to heat dissipation to the environ-
ment. Our calculations show that, regardless of exercise
intensity, the difference between muscle and core tem-
peratures cannot exceed 1.3�C. Consistent with this,
the muscle-core temperature difference at the highest
workload was found to be »1.0�C [31,56]. In the study
by Cotter et al. [57], core temperature (as an average
between esophageal and rectal temperatures) and mus-
cle temperature (in the m. vastus lateralis) were mea-
sured simultaneously in healthy adult volunteers
during exercise. While the individual muscle-core tem-
perature differences were not reported, the difference
between the group’s mean muscle temperature and the
group’s mean core temperature (calculated by us based
on the figures) was negative before the exercise, then
increased, and peaked at »1.3�C.

Summary

� At equilibrium, the temperature difference
between an organ tissue and the arterial blood

supplied to this organ is directly proportional to
the arteriovenous difference in oxygen content
and does not depend on the blood flow.

� Tissue-arterial blood temperature differences
cannot exceed a maximum theoretical limit of
1.3�C, which corresponds to the situation where
all oxygen is extracted from 100% saturated
blood and metabolized in a single passage
through the tissue. Non-circulatory heat dissipa-
tion from the organ to the environment makes
the actual differences smaller than the theoretical
limit.

� Time constants of local temperature dynamics
depend on blood flow. In organs with high perfu-
sion, such as the brain and contracting muscles,
temperature stabilizes within a few minutes after
a perturbation. In organs with low perfusion,
temperature converges to a new equilibrium
within a few tens to a few hundreds of minutes.

� Our analysis supports that and explains why the
arterial blood temperature is the main determi-
nant of the temperature of tissues, including
brain and brown adipose tissues.

Recommendations for physiologists

� Any assessment of tissue thermogenesis should
not be based on a measure of this tissue tempera-
ture alone, but rather on a tissue-core tempera-
ture difference. For example, an index of BAT
activation, as assessed by infrared imaging, can
be proposed as the temperature difference
between a skin projection of the depot of interest
and the body core.

� Changes in either an organ’s blood flow alone or
metabolism alone are not sufficient to predict the
change in the organ’s temperature, as the organ’s
thermal balance depends on both the production
and removal of heat. Conversely, an increase in
tissue temperature does not necessarily imply an
increased metabolism.

� Considering the significant inertia of thermal
responses, it may take minutes to hours to reach
new temperature equilibrium after a perturba-
tion, depending on the level of tissue perfusion.

� The proposed basic model can be instrumental
for data interpretation and experimental design
in various areas of physiology dealing with
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temperature, metabolism, blood flow, and their
interactions.
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